

Sshuttle, the unilateral VPN

Avery Pennarun

2011 04 30 (rev.b)

What's a VPN?

● Connect to computers on the other side of a
firewall as if you were there

5

IPsec Sucks

● The most nonstandard standard ever passed by
the IETF

● Virtually all implementations are incompatible
● Not designed for NAT

● every NAT router had to add special support for it

● Requires kernel-level driver
● Bloats packets
● Requires a genius to configure

9

OpenVPN Sucks Less

● There's only one, so it interoperates
● Free
● Not written by morons
● Still requires kernel-level support
● Still hard to configure
● Still requires support from your admin

● ...who probably prefers IPsec...

● No blessing from the IETF

10

ssh

● Exists everywhere there's Unix
● Easy to set up: often installed by default
● Works with simple password authentication
● But allows fancy public key crypto
● Sucks at port forwarding

12

Sshuttle

● A VPN on top of ssh
● Works with any ssh server
● Exactly as easy as ssh
● Leaves all the crypto to ssh
● Gets through NAT as easily as ssh
● Needs no admin access on the server

14

Digression: TCP-over-TCP

● The obvious way to route packets over ssh is a
disaster
● I should know, I did it

● TCP depends on packet loss to control its
speed

● But when carrying TCP over TCP, the inner
TCP never experiences packet loss because
the outer TCP fixes it

17

Double Digression: Rate Limiting 1a

● If both ends of a connection are on 100 MBit
ethernet...

● How do they know the link between is only 1
MBit?

18

Double Digression: Rate Limiting 1b

● They don't!
● The slow link drops packets if you send too fast
● And TCP notices this and slows down

18

Double Digression: Rate Limiting 2a

● What if two people on your fast network are
transmitting at once?

● How do they know to transmit at only 500 kbits
each?

19

Double Digression: Rate Limiting 2b

● They don't!
● Statistically, the slow link drops more packets

from the fastest sender
● (5% of a larger number...)

● And so the fastest one slows down more!

19

Double Digression: Rate Limiting 3a

● What if there are 25 links in the chain and
millions of computers? How do they know how
fast to send?

19

Double Digression: Rate Limiting 3b

● You guessed it...

19

Triple Digression!!!1!
Bufferbloat (Google it)

● Bufferbloat is caused by people who hate
packet loss

● People see routers dropping packets and try to
“fix” it by adding big buffers

● Your cable modem or DSL router does this
● The Linux kernel does this
● And it destroys TCP performance
● That's the only reason why large uploads

(Bittorrent) make your Internet suck

22

Bufferbloat:
The Delay*Bandwidth Product

● If it takes 0.1 secs to get from A to B...
● ...and the uplink is 500 kbits (50 kbytes/sec)
● Then you have about 0.1*50 = 5 kbytes in flight

at any moment
● a 500 kbyte buffer means 10 seconds of latency
● The “right” buffer is roughly bandwidth*delay

 = 5 to 10 kbytes
● “As big as possible” is always wrong!

24

Um, where were we?

● Bufferbloat sucks

– TCP depends on packet loss
● TCP-over-TCP is like infinite bufferbloat

 -> infinite suck

● So if you take TCP packets and route them over
ssh (ie. TCP)...

25

...then you'd better be smart

● Sshuttle doesn't do TCP-over-TCP
● Doesn't use a “tap” interface and capture

packets
● Uses “transparent proxying” instead
● Kind of like the old SLiRP tool
● Unwinds the inner TCP and sends the payload

26

Benefits

● No TCP-over-TCP crap
● Unfails TCP Slow Start algorithm by sharing it

between connections
● Reduces TCP/IP overhead instead of adding it

(especially by merging small packets)
● Improves crypto:

● Removes obvious packet boundaries and timings
(unlike IPsec/OpenVPN)

● Can use simple, well-understood streaming
encryption (ssh is more trustworthy than IPsec)

28

Bonus: Bufferbloat Defeater

● Like everyone else nowadays, ssh has its own
extra layer of bufferbloat

● sshuttle uses a cheap hack to keep latency low
even in heavy-traffic situations

● So if you upload and ssh at the same time, use
sshuttle... it'll suck less

29

But that's not all...

Self-assembly

● You don't have to install sshuttle on the server
● It uploads and runs itself!

● Internet worm style

● There's never a server version mismatch
● The server always has the latest features
● We don't have to standardize a protocol

● ssh already did

30

Self-assembly: Phase 1

ssh myserver “

 python -c '

 import sys;

 skip_imports=1; verbosity=0;

 exec compile(sys.stdin.read(764),

 \"assembler.py\", \"exec\")

 '

”
32

Self-assembly: Phase 2
import sys, zlib

z = zlib.decompressobj()

mainmod = sys.modules[__name__]

name = 1

while name:

 name = sys.stdin.readline().strip()

 if name:

 nbytes = int(sys.stdin.readline())

 content = z.decompress(sys.stdin.read(nbytes))

 exec compile(content, name, "exec")

 mainmod.__dict__[name[:-3]] = mainmod

main()

34

DNS Remangling (--dns)

● Sshuttle mostly doesn't support UDP (yet)
● UDP-over-TCP also sucks :(

● But we make an exception for DNS
● Packets destined for your local nameserver get

bounced to the remote one instead
● And answers pretend to come from your local

one

35

Magic DNS Discovery (--auto-hosts)

● But sometimes you don't want all your DNS
going to the remote server

● Maybe you only want the remote computer
names in your local DNS

● sshuttle polls the remote network to find all the
nearby computers
● nmblookup, smbclient, domain controller
● reverse DNS, netstat -a
● and so on

36

Magic Route Discovery (--auto-nets)

● Setting up a VPN is hard because you have to
know which subnets to route

● --auto-nets just asks the server which routes
are local

● And sets up your local routing to send those
over the VPN

37

A little note about Firesheep

● Use sshuttle, and you're immune.

Net Result

● Everything you need to connect to your office
network:
● ./sshuttle -NHr myserver

● Everything you need to bypass Firesheep:
● ./sshuttle --dns -r myserver 0/0

37

Also, there is a fancy MacOS GUI

Demo

38

Questions?

40

