

bup: the git-based backup system

Avery Pennarun

2011 04 30

The Challenge

● Back up entire filesystems (> 1TB)
● Including huge VM disk images (files >100GB)
● Lots of separate files (500k or more)
● Calculate/store incrementals efficiently
● Create backups in O(n), where n = number of

changed bytes
● Incremental backup direct to a remote computer

(no local copy)
● ...and don't forget metadata

5

The Result

● bup is extremely fast - ~80 megs/sec in python
● Sub-file incrementals are very space efficient

● >5x better than rsnapshot in real-life use

● VMs compress smaller and faster than gzip
● Dedupe between different client machines
● O(log N) seek times to any part of any file
● You can mount your backup history as a

filesystem or browse it as a web page

8

The Design

8

Why git?

● Easily handles file renames
● Easily deduplicates between identical files and

trees
● Debug my code using git commands
● Someone already thought about the repo

format (packs, idxes)
● Three-level “work tree” vs “index” vs “commit”

11

Problem 1: Large files

● 'git gc' explodes badly on large files; totally
unusable

● git bigfiles fork “solves” the problem by just
never deltifying large objects: lame

● zlib window size is very small: lousy
compression on VM images --

13

Digression: zlib window size

● gzip only does two things:
● backref: copy some bytes from the preceding 64k

window
● huffman code: a dictionary of common words

● That 64k window is a serious problem!
● Duplicated data >64k apart can't be

compressed
● cat file.tar file.tar | gzip -c | wc -c

● surprisingly, twice the size of a single tar.gz

18

bupsplit

● Uses a rolling checksum to --

18

Digression: rolling checksums

● Popularized by rsync (Andrew Tridgell, the
Samba guy)

● He wrote a (readable) Ph.D. thesis about it
● bup uses a variant of the rsync algorithm to --

19

Double Digression: rsync algorithm

● First player:
● Divide the file into fixed-size chunks
● Send the list of all chunk checksums

● Second player:
● Look through existing files for any blocks that have

those checksums
● But any n-byte subsequence might be the match
● Searching naively is about O(n^2) ... ouch.
● So we use a rolling checksum instead

21

Digression: rolling checksums

● Calculate the checksum of bytes 0..n
● Remove byte 0, add byte n+1, to get the

checksum from 1..n+1
● And so on

● Searching is now more like O(n)... vastly faster
● Requires a special “rollable” checksum

(adler32)

23

Digression: gzip --rsyncable

● You can't rsync gzipped files efficiently
● Changing a byte early in a file changes the

compression dictionary, so the rest of the file is
different

● --rsyncable resets the compression dictionary
whenever low bits of adler32 == 0

● Fraction of a percent overhead on file size
● But now your gzip files are rsyncable!

26

bupsplit

● Based on gzip --rsyncable
● Instead of a compression dictionary, we break

the file into blocks on adler32 boundaries
● If low 13 checksum bits are 1, end this chunk
● Average chunk: 2**13 = 8192

● Now we have a list of chunks and their sums

● Inserting/deleting bytes changes at most
two chunks!

28

bupsplit trees

● Inspired by “Tiger tree” hashing used in some
P2P systems

● Arrange chunk list into trees:
● If low 17 checksum bits are 1, end a superchunk
● If low 21 bits are 1, end a superduperchunk
● and so on.

● Superchunk boundary is also a chunk boundary

● Inserting/deleting bytes changes at most
2*log(n) chunks!

30

Advantages of bupsplit

● Never loads the whole file into RAM
● Compresses most VM images more (and

faster) than gzip
● Works well on binary and text files
● Don't need to teach it about file formats
● Diff huge files in about O(log n) time
● Seek to any offset in a file in O(log n) time

32

Problem 2: Millions of objects

● Plain git format:
● 1TB of data / 8k per chunk: 122 million chunks
● x 20 bytes per SHA1: 2.4GB
● Divided into 2GB packs:

500 .idx files of 5MB each
● 8-bit prefix lookup table

● Adding a new chunk means searching
 500 * (log(5MB)-8) hops
 = 500 * 14 hops
 = 500 * 7 pages = 3500 pages

34

Millions of objects (cont'd)

● bup .midx files: merge all .idx into a single .midx
● Larger initial lookup table to immediately narrow

search to the last 7 bits
● log(2.4GB) = 31 bits
● 24-bit lookup table * 4 bytes per entry: 64 MB

● Adding a new chunk always only touches
two pages

35

Bloom Filters
● Problems with .midx:

● Have to rewrite the whole file to merge a new .idx
● Storing 20 bytes per hash is wasteful; even 48 bits

would be unique
● Paging in two pages per chunk is maybe too much

● Solution: Bloom filters
● Idea borrowed from Plan9 WORM fs
● Create a big hash table
● Hash each block several ways
● Gives false positives, never false negatives
● Can update incrementally

36

bup command line: indexed mode

● Saving:
● bup index -vux /
● bup save -vn mybackup /

● Restoring:
● bup restore (extract multiple files)
● bup ftp (command-line browsing)
● bup web
● bup fuse (mount backups as a filesystem)

36

Not implemented yet

● Pruning old backups
● 'git gc' is far too simple minded to handle a 1TB

backup set

● Metadata
● Almost done: 'bup meta' and the .bupmeta files

37

Crazy Ideas

● Encryption
● 'bup restore' that updates the index like 'git

checkout' does
● Distributed filesystem: bittorrent with a smarter

data structure

39

Questions?

40

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

