

 1

Python is only slow
if you use it wrong

Avery Pennarun <apenwarr@gmail.com>

Google Inc.

This presentation absolutely, positively, in no way at all,
could ever possibly begin to reflect the opinion of my employer

3

I mention Google here not because they endorse the
content, but because if I mention Google, then this
counts as “evangelism” and so going to conferences
like this is totally a work-related expense. And it's
actually sort of valuable too - I think a few people
came away with positive feelings about Google after
this one. Maybe Java lovers didn't though. But hold
that thought.

 2

Who says?

● bup: backup software with 80 megs/sec
thruput - in python

● http://github.com/apenwarr/bup

● sshuttle: VPN software that easily handles
802.11g/n speeds - in python

● http://github.com/apenwarr/sshuttle

5

This is where I plug my most recent awesome open
source projects. The side note on 80 megs/sec is it's
actually 80 megs/sec/core, so if your CPU has more
cores then it could theoretically go faster. But it
doesn't because nobody coded the multicore stuff
yet.

 3

The Easiest Way to Use Python Wrong

TIGHT INNER LOOPS.

A line of python code is 80-100x slower than a
line of C code.

 s = open('file').read()
 for char in s:

 ...

JUST SAY NO.
7

“Don't do that then” is my primary advice here. In no
circumstances should you attempt to process things
character-by-character in any interpreted language if
you care about performance.

 4

The Easiest Way to Make Python Fast

● Use regexes and C modules.

● No such thing as “100% pure python.”

● Forget about swig: writing C modules is easy.

● python + C together is, so far, the winning
combination.

● C is simple; python is simple; pypy is hard.

9

There were some pypy people at the conference. pypy
turns out to be pretty good (see later slides) but it's
still a really complicated way to get not-as-good-as-C
performance and memory usage. If you care about
performance, use a C module.

The point I made about swig is just this: like all auto-
generated code, it makes it look like what it's doing is
rocket science. But python's C API is great! For
most things all you need to know is there's something
for unpacking tuples and another thing for packing
and returning them.

Extremely lacking feature of pypy: it doesn't work with
python's standard C API, so C modules don't work or
(with their new crazy proxy thing) are super slow. So
you'll have to continue ignoring pypy until they fix it.

 5

The Other Way to use Python Wrong

● Computation threads

● Worthless because of GIL

● Threads are ok for I/O

● fork() works great for both

● C modules that use threads are fine

10

When I say “worthless because of GIL” I mean that
whenever python is interpreting something, none of
the other threads can be interpreting anything. So
basically you get all the speed of one thread with all
the annoyance of tracking your threads. And the GIL
really isn't going anywhere soon, so you need a new
strategy.

I/O bound processes (particularly disk) are okay for
threads because python releases the GIL while they
run.

Someone during the presentation pointed out the
“multiprocess” module which does fork() for you and
gives back the results. I heard it's pretty good,
haven't tried it.

 6

Garbage Collection

10

 7

Refcounting... and threads

● A bad combo

● You would need locks around every single
variable access

● One reason why removing the GIL is almost
impossible

● There are tricks...

12

What you really need to know here is that the GIL is
one big lock - and thanks to its existence, you don't
need per-variable locks. This is why python's
refcounting can be absurdly fast compared to doing
the same thing in, say, just about any thread-enabled
language. But if you drop the GIL, you have to add
fine-grained locks for every variable access and that
will never be fast... which is why the GIL isn't going
anywhere unless someone invents a fundamental
improvement to computer science. Why not just use
GC instead of refcounting? That's coming up next.

The “tricks” I refer to are things like having
smartpointer refcounts in addition to object-level
refcounts. If your smartpointers don't cross threads,
they don't need locks. C++ people do this
sometimes and get good performance. But it's hard.

 8

Python is not a garbage collected language (*)

for i in xrange(1000000):
 a = '\0'*10000

-1 -0.5 0 0.5 1 1.5 2 2.5

0

5000

10000

15000

20000

25000

MemTest array[1] Benchmark

C Go python java -client pypy

Time (s) - shorter is better

k
b

 u
s
e

d
 -

 l
o

w
e

r
is

 b
e

tt
e

r

15

In this test, we just allocate a 10kbyte array a million
times in a loop, throwing it away each time. Watch
out for time=0 in the graph: that's when we actually
start allocating. The time before that is “warmup”
time for the test program (which sleeps a bit before
starting the loop).

Notice how pypy's line is actually even shorter than C -
a surprising result, but maybe they're using a fancy
allocator (my C program just uses plain malloc()).

Note how both GC languages tested - pypy and java -
suck memory like crazy after the program starts.
Plain python has a baseline memory usage just for
starting at all, but the 10k allocation makes basically
no difference. Notice also that interpreted python is
still much faster than java (!)

 9

Java is a garbage collected language

...from my upcoming research paper, Seriously, Java, WTF? (Who's the Fastest?)

0 0.5 1 1.5 2 2.5 3

0

50000

100000

150000

200000

250000

300000

350000

400000

MemTest array[1] Benchmark

java

java -client

java -XX:+UseConcMarkSweepGC

Time (s) - shorter is better

k
b
 u

s
e

d
 -

 l
o
w

e
r

is
 b

e
tt
e

r

17

I found that Java not only used more memory than
python in all my tests - it's also slower in all cases!
Note also that the y-scale on this graph is different
from the previous one.

The default “java” (on my 64-bit Linux system) is the
same as “java -server”. Yes, I tried it. In this mode, it
just sucks up all available heap space (-Xmx), then
finally starts GC. Ever wonder why Java programs
suck RAM? Because they literally waste it all!

java -client is much better on memory - it GCs
frequently, but at a cost of 3x slower execution time.
And no, the newfangled “concurrent gc” doesn't help:
it's slower *and* uses more memory than -client.

BTW, default (-server) is the fastest, but still 2x slower
than python.

 10

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

0

50000

100000

150000

200000

250000

300000

350000

memtest (1 var)

memtest2 (array[1000])

memtest3 (circular refs)

Time (s) - shorter is better

k
b

y
te

s
 u

s
e

d
 -

 l
e

s
s
 i
s
 b

e
tt
e

r

(*) Except sometimes python is a garbage
collected language

for i in xrange(1000000):
 a = ['\0'*10000, None]
 b = ['\0'*10000, a]
 a[1] = b
 aa[i % 1000] = a

19

I had to write a somewhat more complicated program
in order to show that python actually shifts from
refcounting to GC in some cases. This is needed
because if you have objects with circular references,
the refcount of no object in the circle will ever hit
zero, so it will never be cleaned up.

Trivia: at least at one point (not sure if this is still true),
perl simply didn't GC at all in that case, so you'd
have a permanent memory leak. Python tries to
save you from yourself in this case, but as you can
see from the yellow graph here, it only barely
succeeeds. Memory usage is roughly what java did
on the previous slide :(

Conclusion: GC is hard.

 11

Getting the Most out of Python's GC

JUST AVOID IT AT ALL COSTS.

● Break circular references by hand when
you're done.

● Better still: use the weakref module.

21

...and here's what you do about it: just don't use
python's GC. Period. It's always avoidable, but you
have to be careful.

The most common example I've seen of accidentally
needing a GC is tree structures: a parent contains a
list of children[] and each child has a pointer back to
the parent. Easy for traversal, but a disaster for
refcounting. Two options for fixing this sort of thing:
delibrately break the circle when you're done with the
tree (ie. set all parent pointers to None), or use
weakref, which lets you make a pointer without
incrementing the refcount.

The downside of a weakref is the pointed-to object
might disappear if nobody else is using it. Not a big
deal if you're just maintaining a tree though, as long
as you're not doing anything crazy.

 12

Deterministic destructors

● Quiz: does this program work on win32?

 open('file', 'w').write('hello')
 open('file', 'w').write('world')

● With “real” gc, you have to manually
manage resources:

● files

● database handles

● sockets

● locks

24

The quiz was fun because it's a double trick question:
on win32, you can't open the same file for write twice
at once unless you use special sharing options, so
the second command could fail randomly if the first
command hasn't GC'd the file pointer yet.

Except refcounting doesn't include the concept of
“randomly.” It always cleans up immediately when
the refcount goes to zero. So in plain python, the
above program is guaranteed to work correctly
(where “correctly” means overwriting 'hello' with
'world' for some reason).

Other python implementations, including ironically
IronPython (usually run on Windows where you
really care about file pointers) don't guarantee this.
But that's stupid. We should have a protest.

 13

Ruffians & Vagabonds are trying to take
away your Deterministic Destructors!

● Some people claim “real gc” is the “right solution”

● But what they mean is “it's the easiest way to do
python on the java or .net runtime”

● “with” statement is powerful, but not good enough

25

The real point of this presentation is to rail against the
people who are trying to make python “better” by
throwing away awesomely clean semantics - like
refcounting - in exchange for slightly more speed.

It's just a bad move. Python is the last bastion of sane
language semantics. If you want to throw away that
in exchange for speed - then go use some language
that does that! Please don't throw away python's
best feature in exchange for one where it will never
win because C will always be faster and python
already works great with C modules.

But don't bother switching to java if you want speed, as
every benchmark I ran (and every real-life
experience of everyone ever) clearly indicates.

 14

Interpreted vs. JIT

 15

-1 -0.5 0 0.5 1 1.5 2 2.5

0

5000

10000

15000

20000

25000

MemTest array[1] Benchmark

C Go python java -client pypy

Time (s) - shorter is better

k
b

 u
s
e

d
 -

 l
o
w

e
r

is
 b

e
tt

e
r

26

This is the same graph as earlier. The thing I want you
to look at this time is the graph to the *left* of time
zero. The jitted languages (java and pypy) show a
sharp ramp-up in memory usage for a few
milliseconds as they start up. (Sampling resolution
here is 100ms, so don't take the timing too literally.)

That ramp-up is the JIT compiler. Which shows us two
things: look how much memory JITting a tiny
program can use (ugh!) and look how much time it
adds to your process startup (double ugh!). And
remember, a program that's *more* than two lines will
take even more memory and take even longer.

 16

jython

C + valgrind

pypy

java -XX:+UseConcMarkSweepGC

java -client

java

mono

python

ruby1.9

ruby1.8

perl

go

C

0 2 4 6 8 10 12 14 16

Hello World Benchmark - HelloMark (tm)

Time (sec) - lower is better

* many git commands run in about 2x the time of C hello world

My patent-pending HelloMark (tm) benchmark forks
and execs a simple “hello world” process 20 times
and tells you the total runtime.

A few things you can see from this: perl and ruby both
start faster than python :(which ought to be
eminently fixable if people care about it. mono is
twice as fast as java, ha, suck it, java! pypy startup
is slower still, the fixing of which could be an
interesting challenge. And jython totally wins the
suck prize here, coming in behind even c+valgrind
(that's 20 valgrind startup/shutdown cycles!). Avoid.

Why does this matter? Because command-line tools
rely fundamentally on startup time. I tried a few git
commands, and typical runtime is ~2x my hello world
test. That is, git in C does real work faster than
hello world in any other language except go.

 17

.pyc files

● are awesome

29

I added this slide to retroactively justify one of the
embarrassing bits in the previous slide: that perl and
ruby both startup faster than python.

All these are non-representative microbenchmarks;
you can't read too much into them. (But java really
does always suck.) HelloMark is a serious
misrepresentation because it doesn't use libraries.

In perl or ruby, importing a library requires re-
interpreting every file in the library, because the
languages are unhygienic. Python “compiles”
each .py file into p-code the first time, so future runs
don't have to parse anything. After the first run,
library heavy python programs are *way* faster than
ruby or perl. eg. django vs. rails: rails apps can take
a full second to reparse all of rails when you change
one file. django reloads near-instantly.

 18

Summary

● Love refcounting, hate gc

● Don't write tight inner loops: that's what C is for

● If you need a JIT, you're doing it wrong

● ...even if the JIT is good

● Let's keep working on that startup time

http://github.com/apenwarr/avebench

30

“Even if the JIT is good” is a polite reference to pypy.
To be honest, I had never used pypy before doing the
benchmarks to do this presentation, but it actually
amazed me with its speed. I mean, the memory
allocator ran faster than C. Wow. Unfortunately, it
uses a lot more RAM and has a much longer startup
time than even plain python, so it doesn't work well in
my personal common use case - systems-level
programming.

Plain python is pretty great for systems programming,
although I would love to see the startup time further
improved. a 'strace python hello.py' makes me cry,
but I bet it could be vastly improved.

That URL there is a copy of my (obviously trivial)
benchmark code. Feel free to clone it and run the
tests for yourself if you're curious.

